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Abstract
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isochronous Hamiltonian systems.
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1. Introduction

Following the recent works of Calogero and his coworkers [2, 3] on isochronous Hamiltonian
systems, we show how a large number of planar isochronous systems can be constructed
in a systematic way. The beauty of Calogero’s formalism lies in its inherent simplicity for
it essentially employs the Hamiltonian of the linear harmonic oscillator, albeit in a novel
manner. Undoubtedly, this is an interesting scheme which yields some surprising results.
In a series of recent papers, Calogero and Levyraz [4, 5] have described a new technique
for deducing isochronous Hamiltonian systems. Essentially, it involves transforming a real
autonomous Hamiltonian H(q, p) into a ‘�’-modified Hamiltonian such that the dynamics
is now isochronous. The procedure requires the introduction of a function, �(q, p), which
behaves like a collective coordinate conjugate to the Hamiltonian, such that the Poisson bracket
{�,H } = 1. The modified Hamiltonian has the following appearance: H̃ = 1

2 (H 2 + �2�2).
Here, � is an arbitrary positive constant and it is evident that H plays the role of the
new momentum. With this particular form of the modified Hamiltonian, H and � evolve
sinusoidally with time and period T = 2π/�. By inverting H and �, one can obtain
expressions for q and p respectively. Since H and � evolve sinusoidally, p and q must
necessarily evolve with the same period T = 2π/�.
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Rectification of the vector field [1] is a diffeomorphism that transforms it into a field
of parallel vectors of identical length in the Euclidean space. In general, every differential
equation ẋ = W(x) can be written in the normal form ẋ1 = 1, ẋ2 = · · · = ẋn = 0 for a suitable
choice of rectifying coordinates in a sufficiently small neighbourhood of any nonsingular point
of the field. In other words, every equation ẋ = W(x) is locally equivalent to the simplest
equation in a neighbourhood of any nonsingular point.

We consider a special type of rectification associated with flow in the phase space
ẋ = G(x), where G(x) = ({

∂H
∂pi

}
,−{

∂H
∂qi

})
. The symplectic structure of the canonical equation

has two consequences: (a) to solve the autonomous system of 2n equations, n integrals are
sufficient and (b) the size of a volume in the phase space remains constant as it flows.

In this brief communication, we describe how by symplectic rectification [6] of the
Hamiltonian H, which plays an auxiliary role, one can identify the collective coordinate �

and thereby construct a modified Hamiltonian H̃ exhibiting isochronicity.

2. Symplectic rectification

We begin by briefly recollecting some basic ideas regarding symplectic rectification of
Hamiltonian systems. Consider a first-order autonomous system of differential equations

dx
dt

= X(x), (2.1)

where x = (x1, x2, . . . , x2n) ∈ R
2n. The associated vector field X in R

2n is a Hamiltonian if
there exists a function H(x) in C2 such that

dx
dt

= J∇xH(x), (2.2)

where J = (
O

−I

I

O

)
is a real 2n × 2n orthogonal skew-symmetric matrix and ∇xH denotes the

symplectic gradient of the Hamiltonian H. Note that O and I represent n × n null and identity
matrices respectively. Under these circumstances, one says that the system of equation (2.1)
is a Hamiltonian. The problem of integrating such a system is often greatly simplified by
making an appropriate change of variables such that the resulting system is easier to solve.
Canonical transformations are a class of point transformations and preserve the canonical
structure (2.2) of Hamilton’s equations of motion. This means that if x = (q, p) ∈ R2n such
that ẋ = J∇xH(x), then under a diffeomorphic coordinate transformation x = x(X) with
X = (Q, P) ∈ R2n the system of equations is transformed to

Ẋ = W(X) = J∇XK, (2.3)

where K(X) is the new Hamiltonian being expressed as a function of the variables (Q, P).
The technique of symplectic rectification, which we shortly illustrate, leads to a pair of

conjugate variables taking the values of the Hamiltonian (constant) and of time, while for n > 1
the remaining coordinates of the phase space are all first integrals of motion. Restricting the
discussion to n = 1 dimensional systems, the objective is to determine a completely canonical
transformation of the variables (q, p) such that the new coordinate

P = H and Q(q, p) = t − t0. (2.4)

This follows from the observation that for a completely canonical transformation, the new
Hamiltonian K(Q,P ) = P so that the canonical equations are Ṗ = 0 and Q̇ = 1. The
procedure is based on the following theorem.
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Theorem 2.1 (Symplectic rectification). Let H(x) be a C1-function in R
2n and x0 ∈ R

2n

such that ∇xH(x0) �= 0. Then there exists a completely canonical transformation X = X(x),
defined in a neighbourhood of x0, such that K(X) = H(x(X)) = Xi for some i.

Its proof is given in [6]. For a one-dimensional Hamiltonian system with q̇ = ∂H
∂p

and

ṗ = − ∂H
∂q

, suppose the initial conditions are q(0) = ξ and p(0) = η respectively. Next,
consider the retrograde flow defined by the Hamiltonian f (ξ, η) = −H(ξ, η) with initial
conditions ξ(0) = q and η(0) = p. By hypothesis, we may assume ∂H

∂p
�= 0 which in turn

implies ξ̇ = ∂f

∂η
= − ∂H

∂η
�= 0 for the retrograde flow. Let φ(ξ, η) = 0 denote a regular curve in

the (ξ, η) plane. Assume that φ(ξ, η) = 0 is not a trajectory of the flow determined by f (ξ, η).
Considering a point (q, p) such that the trajectory under f intersects the curve φ(ξ, η) = 0 at
time t = t̄ (q, p), it may be shown that t̄ can be determined from the equation

φ(ξ(q, p, t̄), η(q, p.t̄)) = 0. (2.5)

The determination of t̄ allows us to complete the canonical transformation (q, p) −→ (Q, P )

through the identification

P = H(q, p) = constant, Q(q, p) = t̄ (q, p). (2.6)

The canonical nature may be explicitly verified by evaluating the Poisson bracket {Q,P } =
{t̄ (q, p),H(q, p)} = 1.

2.1. Illustration of symplectic rectification via examples

In this section, we illustrate the technique by considering the following example of Calogero
and Levyraz in [5].

Example 1. H = wpq.
We use symplectic rectification to determine the collective coordinate function �(q, p)

such that {�,H } = 1. With the standard Poisson bracket {q, p} = 1, the equations of motion
are q̇ = wq and ṗ = −wp. Their solutions are q(t) = ξ ewt and p(t) = η e−wt , respectively.
Here, ξ = q(0) and η = p(0) represent the initial conditions. The retrograde Hamiltonian
is f = −wξη with {ξ, η} = 1. The solutions of the canonical equations of motion for the
retrograde Hamiltonian with initial conditions ξ(0) = q and η(0) = p are given by

ξ(t) = q e−wt and η(t) = p ewt , (2.7)

respectively. By the conditions of the previous theorem, there exists a canonical transformation
such that the new Hamiltonian K(Q,P ) = P which implies by virtue of the equations of
motion P = constant, so that we may set P = H = wpq, while the new coordinate is
Q = t − t0. We consider the regular curve

φ(ξ, η) = ξ − a = 0, (2.8)

where a is an arbitrary constant. It is easily checked that {φ(ξ, η), f } = {ξ − a,−wξη} =
−wξ �= 0 and so ξ = a is not a trajectory under f . Fixing a point (q, p) such that the
trajectory (2.7) intersects the curve (2.8) at t = t̄ , we find that t̄ = 1

w
log

(
q

a

)
. Then, as

Q(q, p) = t − t0, setting t0 = 0 we obtain Q = t̄ (q, p) = 1
w

log
(

q

a

)
. It is easy to check that

{Q,P } = 1, thereby verifying the canonical nature of the transformation:

P = wpq, Q = 1

w
log

(
q

a

)
. (2.9)

The latter is precisely the expression for the collective coordinate � in the example in [5].
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In the following example, we show how using symplectic rectification we may derive
isochronous Hamiltonian systems following Calogero’s method.

Example 2. H = q cot p
In this case, Hamilton’s equations are q̇ = − q

sin2 p
and ṗ = −cot p. Their solutions are

given by

q(t) = ξ

sin η

√
e−2t − cos2 η, p(t) = arccos(et cos η), (2.10)

where q(0) = ξ and p(0) = η. Note that the inverse trigonometric functions are multivalued,
so we consider their principal values.

For the flow determined by the retrograde Hamiltonian f (ξ, η) = −ξ cot η under the
initial conditions ξ(0) = q, η(0) = p, we find that

ξ(t) = q

sin p

√
e2t − cos2 p, η(t) = arccot(e−t cos p). (2.11)

The choice of the curve φ(ξ, η) is not unique and different choices yield different canonical
transformations. However, it has to be ensured that the curve φ is not a trajectory. Suppose
we take

φ(ξ, η) = ξ

sin η
= α, (2.12)

where α is an arbitrary constant. As explained in the previous example, for fixed (q, p) on the
trajectory (2.11), its intersection with the curve (2.12) occurs at time t = t̄ where

t̄ (q, p) = log

(
sin p

q

)
.

Hence, we arrive at the following canonical transformation:

P(q, p) = q cot p and Q(q, p) = log

(
sin p

q

)
(2.13)

with {q, p} = 1. We then define the �-modified Hamiltonian by

H̃ = C

2

[(
q cot p

C

)2

+ �2 log2

(
sin p

q

)]
. (2.14)

The constant C has been introduced purely to ensure dimensional consistency. By construction,
{Q,P } = 1 and (2.14) is just the harmonic oscillator Hamiltonian. The time evolution of P
and Q is given by

Q̇ = {Q, H̃ } = P

C
Ṗ = {P, H̃ } = −C�2Q. (2.15)

These have solutions

Q(t) = Q(0) cos(�t) +
P(0)

C�
sin(�t)

(2.16)
P(t) = P(0) cos(�t) − CQ(0)� sin(�t)

and evolve periodically with period T = 2π
�

. From (2.13), it follows that

cos p = PeQ so that p(t) = cos−1[PeQ] (2.17)

and

q = e−Q sin p = e−Q sin[cos−1(P eQ)]. (2.18)

In view of the sinusoidal dependence of P and Q on t as evident from (2.16), we conclude that
q and p evolve with the same period T = 2π

�
.
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3. A Liénard-type equation

In this section, we investigate the applicability of the technique described above to ordinary
differential equations of the following class:

ẍ + F(x)ẋ2 + G(x) = 0. (3.1)

The isochronicity problem and the properties of the periodic function were studied by
Sabatini [7]. Let us express (3.1):

ẋ = y, ẏ = −G(x) − F(x)y2 (3.2)

and denote f (x) = ∫ x

0 F(s) ds and φ(x) = ∫ x

0 ef (x) ds. It was demonstrated in [7] that by
substitution u = φ(x), equation (3.2) can be transformed into the system

u̇ = y, ẏ = −G(φ−1(u)) ef (φ−1(u)).

This system is a particular case of the system

ẋ = y, ẏ = −z(x). (3.3)

Denote U(x) = ∫ x

0 z(s) ds; then the first integral is H(x, y) := y2

2 + U(x) = E, where
H(x, y) is the Hamiltonian of (3.2).

Consider the following system of first-order ordinary differential equations:

ẋ = f (x)y, ẏ = −f ′(x)

2
y2 + �2h(x). (3.4)

This is equivalent to the following second-order equation:

ẍ = 1

2

f ′(x)

f (x)
ẋ2 + �2f (x)h(x), (3.5)

so comparison with (3.1) shows that F(x) = − 1
2

f ′(x)

f (x)
and G(x) = −�2f (x)h(x).

Let f (x) be defined as

f (x) =
∫ x −2h(x̄) dx̄

h2(x)
, (3.6)

where h(x) is any integrable real-valued function such that f (x) > 0. Define a pair of
conjugate variables H and � in the spirit of Calogero and Levyraz by

H :=
√

f (x)y, � :=
(∫ x

−2h(x̄) dx̄

) 1
2

, (3.7)

where x and y are assumed to be canonical variables, having Poisson brackets {x, y} = 1.
It is straightforward to verify that {�,H } = 1 so that as before we define a �-modified
Hamiltonian by

H̃ = 1
2 (H 2 + �2�2), (3.8)

which gives rise to the following equations �̇ = H and Ḣ = −�2� with solutions

H(t) = H(0) cos(�t) − �(0)� sin(�t) (3.9)

�(t) = �(0) cos(�t) +
H(0)

�
sin(�t). (3.10)

It is easy to see that the evolution equations for x and y as determined by the Hamiltonian H̃

are

ẋ = ∂H̃

∂y
= f (x)y, ẏ = −∂H̃

∂x
= −f ′(x)

2
y2 + �2h(x), (3.11)
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where we have made explicit use of (3.8) and the definitions of H and � given in (3.7).
Given a suitable function h(x), one can in principle solve for x from �2 = ∫ x −2h(x̄) dx̄,
say x(t) = K[�2(t)], and obtain y(t) = H(t)

[f (K(�2(t)))]
1
2

from the first equation in (3.7). As

H(t) and �(t) evolve periodically with time, it follows that x and y also evolve with the
same period, namely T = 2π

�
. The system of equations in (3.11) is equivalent to (3.5) by

construction.
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